Optimal mathematical programming and variable neighborhood search for k-modes categorical data clustering
نویسندگان
چکیده
منابع مشابه
Clustering Categorical Data with k-Modes
A lot of data in real world databases are categorical. For example, gender, profession, position, and hobby of customers are usually defined as categorical attributes in the CUSTOMER table. Each categorical attribute is represented with a small set of unique categorical values such as {Female, Male} for the gender attribute. Unlike numeric data, categorical values are discrete and unordered. Th...
متن کاملA fuzzy k-modes algorithm for clustering categorical data
This correspondence describes extensions to the fuzzy k-means algorithm for clustering categorical data. By using a simple matching dissimilarity measure for categorical objects and modes instead of means for clusters, a new approach is developed, which allows the use of the k-means paradigm to efficiently cluster large categorical data sets. A fuzzy k-modes algorithm is presented and the effec...
متن کاملA genetic fuzzy k-Modes algorithm for clustering categorical data
The fuzzy k-Modes algorithm introduced by Huang and Ng [Huang, Z., & Ng, M. (1999). A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4), 446–452] is very effective for identifying cluster structures from categorical data sets. However, the algorithm may stop at locally optimal solutions. In order to search for appropriate fuzzy membership matrices...
متن کاملA Genetic k-Modes Algorithm for Clustering Categorical Data
Many optimization based clustering algorithms suffer from the possibility of stopping at locally optimal partitions of data sets. In this paper, we present a genetic k-Modes algorithm(GKMODE) that finds a globally optimal partition of a given categorical data set into a specified number of clusters. We introduce a k-Modes operator in place of the normal crossover operator. Our analysis shows th...
متن کاملNumerical and Categorical Attributes Data Clustering Using K- Modes and Fuzzy K-Modes
Most of the existing clustering approaches are applicable to purely numerical or categorical data only, but not the both. In general, it is a nontrivial task to perform clustering on mixed data composed of numerical and categorical attributes because there exists an awkward gap between the similarity metrics for categorical and numerical data. This paper therefore presents a general clustering ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2019
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2019.01.042